
Chapter 5: Structure and Union

6.1 Basic Concept:
A structure is a user-defined data type in C that allows you to group together
variables of different types under a single name. It is used to represent a collection of
related data items.
Example:
#include <stdio.h>

// Structure declaration

struct student {

 int rollNumber;

 char name[50];

 int age;

};

int main() {

 // Structure variable declaration and initialization

 struct student s1 = { 1, "John", 20 };

 // Accessing structure members

 printf("Roll Number: %d\n", s1.rollNumber);

 printf("Name: %s\n", s1.name);

 printf("Age: %d\n", s1.age);

 return 0;

}

6.2 Structure declaration, initialization:
Structure declaration involves defining the structure type and its members, specifying
the data type and name of each member. Structure initialization is the process of
assigning values to the members of a structure variable.
Example:
#include <stdio.h>

// Structure declaration

struct point {

 int x;

 int y;

};

int main() {

 // Structure variable declaration and initialization

 struct point p1 = { 3, 5 };

 // Accessing structure members

 printf("x-coordinate: %d\n", p1.x);

 printf("y-coordinate: %d\n", p1.y);

 return 0;

}

6.3 Structure within structure:
A structure can contain another structure as one of its members. This is known as a
nested structure or a structure within a structure.
Example:
#include <stdio.h>

// Structure declaration

struct address {

 char street[50];

 char city[50];

};

// Structure declaration with nested structure

struct person {

 char name[50];

 int age;

 struct address addr;

};

int main() {

 // Structure variable declaration and initialization

 struct person p1 = { "John", 25, { "123 Main St", "New York" } };

 // Accessing structure members

 printf("Name: %s\n", p1.name);

 printf("Age: %d\n", p1.age);

 printf("Address: %s, %s\n", p1.addr.street, p1.addr.city);

 return 0;

}

6.4 Nested Structures:
Nested structures are structures that are defined within another structure. They allow
for hierarchical data representation, where the inner structures are accessed through
the outer structure.
Example:
#include <stdio.h>

// Structure declaration

struct date {

 int day;

 int month;

 int year;

};

// Structure declaration with nested structures

struct employee {

 char name[50];

 int empId;

 struct date dob;

};

int main() {

 // Structure variable declaration and initialization

 struct employee emp1 = { "John Doe", 1234, { 10, 5, 1990 } };

 // Accessing structure members

 printf("Name: %s\n", emp1.name);

 printf("Employee ID: %d\n", emp1.empId);

 printf("Date of Birth: %d/%d/%d\n", emp1.dob.day, emp1.dob.month,

emp1.dob.year);

 return 0;

}

6.5 Array of Structure:
An array of structures is a collection of multiple structures of the same type. It allows
you to store and manipulate multiple instances of a structure together.
Example:

#include <stdio.h>

// Structure declaration

struct student {

 int rollNumber;

 char name[50];

 int age;

};

int main() {

 // Array of structures declaration and initialization

 struct student students[3] = {

 { 1, "John", 20 },

 { 2, "Alice", 21 },

 { 3, "Bob", 19 }

 };

 // Accessing structure members

 for (int i = 0; i < 3; i++) {

 printf("Student %d:\n", i + 1);

 printf("Roll Number: %d\n", students[i].rollNumber);

 printf("Name: %s\n", students[i].name);

 printf("Age: %d\n", students[i].age);

 printf("\n");

 }

 return 0;

}

In this example, an array of structures named students is declared and initialized

with three instances of the student structure. The members of each structure within

the array can be accessed using the dot operator (.).

